## Further mathematics

## Higher level

Paper 1

Thursday 17 May 2018 (afternoon)

2 hours 30 minutes

## Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [150 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 9]
(a) Use the Euclidean algorithm to find the greatest common divisor of 74 and 383.
(b) Hence find integers $s$ and $t$ such that $74 s+383 t=1$.
2. [Maximum mark: 6]

Let $A^{2}=2 A+I$ where $A$ is a $2 \times 2$ matrix.
(a) Show that $A^{4}=12 A+5 I$.

Let $\boldsymbol{B}=\left[\begin{array}{cc}4 & 2 \\ 1 & -3\end{array}\right]$.
(b) Given that $\boldsymbol{B}^{2}-\boldsymbol{B}-4 \boldsymbol{I}=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$, find the value of $k$.
3. [Maximum mark: 7]
(a) A number written in base 5 is 4303 . Find this as a number written in base 10 .
(b) 1000 is a number written in base 10. Find this as a number written in base 7.
4. [Maximum mark: 12]

The transformations $T_{1}, T_{2}, T_{3}, T_{4}$, in the plane are defined as follows:
$T_{1}$ : A rotation of $360^{\circ}$ about the origin
$T_{2}$ : An anticlockwise rotation of $270^{\circ}$ about the origin
$T_{3}$ : A rotation of $180^{\circ}$ about the origin
$T_{4}$ : An anticlockwise rotation of $90^{\circ}$ about the origin.
(a) Copy and complete the following Cayley table for the transformations of $T_{1}, T_{2}, T_{3}, T_{4}$, under the operation of composition of transformations.

|  | $T_{1}$ | $T_{2}$ | $T_{3}$ | $T_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $T_{1}$ | $T_{1}$ | $T_{2}$ | $T_{3}$ | $T_{4}$ |
| $T_{2}$ | $T_{2}$ |  |  |  |
| $T_{3}$ | $T_{3}$ |  |  |  |
| $T_{4}$ | $T_{4}$ |  |  |  |

(b) (i) Show that $T_{1}, T_{2}, T_{3}, T_{4}$ under the operation of composition of transformations form a group. Associativity may be assumed.
(ii) Show that this group is cyclic.

The transformation $T_{5}$ is defined as a reflection in the $x$-axis.
(c) Write down the $2 \times 2$ matrices representing $T_{3}, T_{4}$ and $T_{5}$.
(d) The transformation $T$ is defined as the composition of $T_{3}$ followed by $T_{5}$ followed by $T_{4}$.
(i) Find the $2 \times 2$ matrix representing $T$.
(ii) Give a geometric description of the transformation $T$.
5. [Maximum mark: 7]

Use the integral test to determine whether or not $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$ converges.
6. [Maximum mark: 9]
(a) Consider the integers between 1 and 20 inclusive.

Let $A=\{$ multiples of 2$\}, B=\{$ multiples of 3$\}, C=\{$ multiples of 4$\}$.
Find the elements in each of the following sets,
(i) $A \cap(B \cup C)$;
(ii) $A \backslash(B \backslash C)$.
(b) Let $M=\{x: x$ is an integer multiple of 10$\}$ and let $N=\{x: x$ is an integer multiple of 5$\}$ Prove that $M$ is a proper subset of $N$.
7. [Maximum mark: 9]

A sample of size 100 is taken from a normal population with unknown mean $\mu$ and known variance 36 .
(a) An investigator wishes to test the hypotheses $H_{0}: \mu=65, H_{1}: \mu>65$.

He decides on the following acceptance criteria:
Accept $H_{0}$ if the sample mean $\bar{x} \leq 66.5$
Accept $H_{1}$ if $\bar{x}>66.5$
Find the probability of a Type I error.
(b) Another investigator decides to use the same data to test the hypotheses
$H_{0}: \mu=65, H_{1}: \mu=67.9$.
(i) She decides to use the same acceptance criteria as the previous investigator. Find the probability of a Type II error.
(ii) Find the critical value for $\bar{x}$ if she wants the probabilities of a Type I error and a Type II error to be equal.
8. [Maximum mark: 13]

Consider the simultaneous linear equations

$$
\begin{aligned}
& x+z=-1 \\
& 3 x+y+2 z=1 \\
& 2 x+a y-z=b
\end{aligned}
$$

where $a$ and $b$ are constants.
(a) Using row reduction, find the solutions in terms of $a$ and $b$ when $a \neq 3$.
(b) Explain why the equations have no unique solution when $a=3$.
(c) Find all the solutions to the equations when $a=3, b=10$ in the form $\boldsymbol{r}=\boldsymbol{s}+\lambda \boldsymbol{t}$.
9. [Maximum mark: 13]
(a) Given that $A$ is the interval $\{x: 0 \leq x \leq 3\}$ and $B$ is the interval $\{y: 0 \leq y \leq 4\}$ then describe $A \times B$ ingeometric form.
(b) Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ be defined by $f(x, y)=(x+3 y, 2 x-y)$.
(i) Show that the function $f$ is a bijection.
(ii) Hence find the inverse function $f^{-1}$.
10. [Maximum mark: 12]
(a) By considering the images of the points $(1,0)$ and $(0,1)$,
(i) determine the $2 \times 2$ matrix $\boldsymbol{P}$ which represents a reflection in the line $y=(\tan \theta) x$;
(ii) determine the $2 \times 2$ matrix $Q$ which represents an anticlockwise rotation of $\theta$ about the origin.
(b) Describe the transformation represented by the matrix $P Q$.
(c) A matrix $M$ is said to be orthogonal if $M^{T} M=I$ where $I$ is the identity. Show that $Q$ is orthogonal.
11. [Maximum mark: 12]

Given that $y$ is a function of $x$, the function $z$ is given by $z=\frac{y-x}{y+x}$, where $x \in \mathbb{R}, x \neq 3$, $y+x \neq 0$.
(a) Show that $\frac{\mathrm{d} z}{\mathrm{~d} x}=\frac{2}{(y+x)^{2}}\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y\right)$.
(b) Show that the differential equation $f(x)\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y\right)=y^{2}-x^{2}$ can be written as $f(x) \frac{\mathrm{d} z}{\mathrm{~d} x}=2 z$.
(c) Hence show that the solution to the differential equation $(x-3)\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y\right)=y^{2}-x^{2}$ given that $x=4$ when $y=5$ is $\frac{y-x}{y+x}=\left(\frac{x-3}{3}\right)^{2}$.
12. [Maximum mark: 15]
(a) Solve the recurrence relation $u_{n}=4 u_{n-1}-4 u_{n-2}$ given that $u_{0}=u_{1}=1$.

Consider $v_{n}$ which satisfies the recurrence relation $2 v_{n}=7 v_{n-1}-3 v_{n-2}$ subject to the initial conditions $v_{0}=v_{1}=1$.
(b) Prove by using strong induction that $v_{n}=\frac{4}{5}\left(\frac{1}{2}\right)^{n}+\frac{1}{5}(3)^{n}$ for $n \in \mathbb{N}$.
13. [Maximum mark: 9]

Consider the matrix $M=\left[\begin{array}{cc}2 & -4 \\ -1 & -1\end{array}\right]$.
(a) Show that the linear transformation represented by $M$ transforms any point on the line $y=x$ to a point on the same line.
(b) Explain what happens to points on the line $4 y+x=0$ when they are transformed by $M$.
(c) State the two eigenvalues of $M$.
(d) State two eigenvectors of $M$ which correspond to the two eigenvalues.
14. [Maximum mark: 8]

At an early stage in analysing the marks scored by candidates in an examination paper, the examining board takes a random sample of 250 candidates and finds that the marks, $x$, of these candidates give $\sum x=10985$ and $\sum x^{2}=598736$.
(a) Calculate a $90 \%$ confidence interval for the population mean mark $\mu$ for this paper.
(b) The null hypothesis $\mu=46.5$ is tested against the alternative hypothesis $\mu<46.5$ at the $\lambda \%$ significance level. Determine the set of values of $\lambda$ for which the null hypothesis is rejected in favour of the alternative hypothesis.
15. [Maximum mark: 9]

Given that the tangents at the points P and Q on the parabola $y^{2}=4 a x$ are perpendicular, find the locus of the midpoint of PQ .

